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tion, especially given the greater possibilities 
proffered by modern  electron microscopes which 
operate at higher accelerat ing voltages and have well 
designed goniometer  stages for sample orientat ion.  
Al though the de te rmina t ion  of  crystal structures 
already solved by X-ray methods  may seem pointless,  
one should  be reminded  that  many interesting 
materials cannot  be crystallized sufficiently for X-ray 
data collection. Hence this ' benchmark '  compar ison  
with a known structure emphasizes the utility of  elec- 
tron crystal lography for yielding reasonably accurate 
structural geometries. 
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In memory of David Harker 

'He had bought a large map representing the sea, "What's the good of Mercator's North Poles and Equators, 
Without the least vestige of land: Tropics, Zones, and Meridian Lines?" 

And the crew were much pleased when they found it to be So the Bellman would cry" and the crew would reply 
A map they could all understand. "They are merely conventional signs!"' 

(Louis Carrol, 'The Hunting o f  the Snark') 

Abstract  

A procedure  is described for the de terminat ion  of  the 
crystal structure phase invariants  of  a compo und  
based on diffraction data measured at two different 
temperatures.  This tempera ture  difference replace- 
ment (TDR) technique is shown to provide phase- 
invariant  in format ion  from exper imental ly  measured 
X-ray diffraction data for two different test structures. 
Al though the new method  does not appear  to be as 
powerful  as single-derivative i somorphous  replace- 
ment  (SIR) phasing,  it does appear  to be capable of  
reliably determining a l imited number  of  negative as 
well as positive phase-restr icted invariants for struc- 
tures conta in ing  as many as 300 non-H atoms in the 
asymmetric  unit. 

0108-7673 / 91 / 050515-07503.00 

Introduct ion  

C o m m o n  solut ions to the crystal lographic  phase 
problem are often based on t r igonometr ic  diffraction 
magni tude  relat ionships  among  derivative groups of  
data measured for the same or Friedel-related reflect- 
ing planes. These derivative groups can include a 
native and various i somorphous  and anomalous-  
scattering cr3~stal specimens as well as structures for 
which a partial  molecular - replacement  solut ion may 
be determined.  The de te rmina t ion  of  non-centrosym- 
metric phases requires, in principle,  a min imum of a 
native and two derivative data sets for which the 
under lying derivative substructure can be de termined 
(Bokhoven,  Schoone & Bijvoet, 1951; Harker,  1956). 
In practice the phases of  certain reflections may be 
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unresolved by the data that are available and may 
require additional derivative measurements for their 
ultimate determination. Certain compounds may be 
crystallized for which it is impossible to introduce 
anomalous scatterers or heavy atoms in an isomor- 
phous manner, and for which the size of the structural 
complexity may exceed the radius of phase determi- 
nation offered by direct-methods procedures. We pro- 
pose that the diffraction patterns provided by a single 
crystal measured at two different temperatures may 
be sufficiently perturbed by the non-uniform distribu- 
tion of atomic temperature factors of the structure to 
be useful for phase determination. 

Background 

The failure of direct methods to solve many structures 
is often exacerbated by the poor diffracting quality 
of the crystals which are available. Concerns that the 
high-angle data may not be of sufficient accuracy or 
that the total number of data may be insufficient 
relative to the number of parameters that have to be 
determined may not be the most serious factors con- 
tributing to the inability of these methods to produce 
a solution. An important limitation of a weakly 
diffracting data set is that the atoms of the structure 
may not exhibit the same proportionate scattering 
power as a function of the Bragg angle 0. Whereas 
all atoms of a particular chemical type, say carbon, 
may scatter equally well in the lowest-resolution shell 
of the data, this balance may not be maintained for 
the higher-resolution shells due to the varying degrees 
of thermal vibration of these atoms in the structure. 
The proportionate scattering power will increase for 
those atoms with the lower temperature factors and 
decrease for those with the higher temperature-factor 
values. This variation is contrary to the point-atom 
assumption upon which the direct-methods phase- 
invariant probability estimates have been derived. 

Crystal structures are composed of atoms that are 
constrained in molecular associations which allow 
varying mean-square vibrational displacements. 
Atoms defining the terminal groups on the surface of 
an organic molecule may be expected to vibrate more 
freely than those in the interior of the structure. When 
crystals of such molecular compounds are cooled, 
say to liquid-nitrogen temperatures, the thermal fac- 
tors of the atoms of the structure decrease, but by a 
proportional, rather than a constant, amount. Atoms 
on the periphery of the molecule usually exhibit the 
greatest reduction in thermal motion and those near 
the center the least. The thermal vibrations on the 
surface of the molecule remain larger than those near 
the center, but the differences between the two 
extremes will be reduced. It has long been recognized 
that a low-temperature diffraction experiment can 
significantly extend the limit of resolution of the data 
by freezing out thermal motion and disorder and 

markedly reduce the amount of crystal decomposition 
during the data measurement, but an added advan- 
tage may be that these low-temperature data will more 
nearly approximate the point-atom assumption 
required for direct phasing methods. This paper will 
demonstrate the validity of this conjecture by compar- 
ing the ambient and liquid-nitrogen values of the 
three-phase invariants of a structure for which the 
room-temperature diffraction data are quite limited. 
Secondly, it will be shown that the differences in 
magnitudes between the normalized structure factors 
of two such data sets can in principle provide an 
experimentally derived estimate of the values of these 
phase invariants. 

Structure-factor relationships 

The differences in magnitude between normalized 
structure factors measured at two widely separated 
temperatures can be analyzed in the same manner as 
the amplitude differences noted between derivative 
data sets as a consequence of isomorphous substitu- 
tion or anomalous scattering. Given that the relevant 
temperature-dependent quasi-normalized E values of 
a diffraction data set may be defined as 

Eh = ~f j  exp (2~rih. rj) 

xexp(-Bjs2)/[~,f~exp(-2Bjs2)] 1/2, (1) 

the differences between corresponding E values at 
two different temperatures, T1 and T2 (TI ~ T2), may 
be considered to be a result of the scattering power 
of a real non-negative difference structure 

AE, = El,( T I ) -  Eh(7"2) 

Efj exp (2rrih. rj) 

x {exp[-ABj(T~)s2]-exp[-ABj(T2)s2]} (2) 

where each data set has been normalized in (1) with 
respect to a minimum average B value, (Bj(T~)m~.), 
to ensure that all the differences 

ABj(TI)= Bj(TI)-(Bj(TI)min) (2a) 

are greater than zero. As a consequence of cooling 
the structure it is expected that all ABe(T~) < ABj(T2) 
and that the quantity 

fj{exp[-AB)(Ti)s2]-exp[-ABj(T2)s2]} (2b) 

will be greater than or equal to zero, as required for 
a real non-negative difference structure. The strongest 
contributors to (2) are those atoms that have the 
greatest reduction in thermal motion as a consequence 
of cooling the structure, thus maximizing (2b), while 
those having temperature factors in the vicinity of 
(B)(L)min) will tend to cancel in (2b) on the assump- 
tion that the position vectors rj remain isomorphous 
at the two temperatures. 
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The density map of a properly scaled difference 
structure should have strong positive peaks at the 
positions of those atoms which experience the greatest 
decrease in Bj upon cooling, and peaks of vanishingly 
small positive density at the sites of atoms which have 
temperature factors in the vicinity of Bj( T~)m~. at both 
temperatures. The map should be non-negative at all 
atomic sites if the difference coefficients, AEu, that 
created it are to be considered in a probabilistic 
direct-methods sense. It is important to realize that 
this non-negative criterion could be jeopardized if 
one does not reliably estimate ( n j ( L ) m i n )  for each of 
the two data sets and the E values are not scaled 
properly. It remains to be demonstrated whether the 
mean (Bj(T~)) normally determined in scaling pro- 
cedures can be used in place of (Bj(T~)mi.), on the 
assumption that the differences between (B~(T~)) and 
(B~(T~)mi.) at both temperatures may tend to be 
similar, and thus not affect the relative scales of 
Eh(T~) and Eh(T2) as they appear in (2). 

The experimental magnitudes IE,( Tt)I and IE,(T2) I 
provide us with a means of estimating AE,,  which 
we cannot measure directly. For centric phase- 
restricted magnitudes we have 

.~E,. = [I E,.( T,)I - I E,.( T2)I] cos ,~,,( T~). (3) 

on the assumption that cos rCt,(T~) will tend to equal 
cos (,oh(T2) with phase probabilities (see Woolfson, 
1956) of 

1 I P{cos[~h(T~)-~ph(T2)]}=2+~tanh(X) ,  (4) 

P(AEh)=½+~tanh[AEhX/Or2(AEh)] (5) 

where X = lEt,( TI)Eh(T2)I/e, e is the estimated vari- 
ance of AEh from (2), Ch is the phase of Eh for a 
particular temperature or difference structure and 
cr2(AEh) is the estimated variance in the difference 
IEh(T,)I-IEn(T2)I estimated from propagation of 
experimental error calculations. 

For non-centric reflections we have a similar 
development for the expected value of the phase 
difference (Cochran, 1955; Sim, 1960) 

E {COS [ ~ h ( T i )  -- q~h(T2) ] }  = I,(2X)/Io(2X) (6)  

from which the expectation magnitude of the 
difference structure amplitudes 

~ ( I~E. I )  -- ( I E . (  T,) I  2 + IEh( 7"2)1 ~ -- 21Eh(T , )  Eh( T2)I 

×e{cos[(ph(T,)--~h(T2)]}) '/2 (7) 

may be obtained. 

Phase-invariant relationships 

In most applications the temperature difference 
replacement (TDR) substructure described by (2) 
may be far too complex to determine by Patterson or 
direct phasing methods to be of any use to attempt 

to phase the entire native structure by conventional 
isomorphous-replacement methods. In lieu of this 
possibility, it was decided to investigate whether the 
phase-invariant relationships linking the native and 
TDR substructures might provide useful information 
to disclose phasing inconsistencies before these 
equations are applied. 

If one considers the example for a three-phase 
structure invariant, q0 = ~0h + ~0k + ~,, on the condition 
that h + k + !  =0,  it follows from (2) that since AEh= 
Eh( T , ) -  El.(T2) 

] A E, A EkzlE,] cos (/)(AE.) 

=IEh(T,)  Ek( T,)E,( T,)I cos ~,,~ 

Eh(7"2) El.(T2) E,(7"2) 

Eh( T2) Ek( T2) E,( T~) 

E.( T~ ) Ek(T~) E,(7"2) 

Eh(Ti) Ek(7"2) E,(7"2) 

Eh( T2)Ek( T,) E,(T,) 

Eh( 7"2) Ek( T, ) E,( 7"2) 

COS (~222 

COS (~)22 I 

COS qbtl  2 

COS (JDI22 

COS (~)211 

COS (J~)212 

-- Eh( Ti)Ek( T2)EI( T,)I cos '/~,2, (8) 

where the phase-invariant values of cos (/)(/tEn) and 
the various cos qb0k are a priori unknown. Given that 
probabilistic estimates of the relative signs of the AEh, 
are known from (3) and that ¢h~(Tt )~h~(T2)  for 
those data for which IEn,( T~)Eh~( T2)[ is large as indi- 
cated in (4) and (6), it follows that the various cos qO~jk 
on the right-hand side of (8) are all approximately 
equal such that the expression may be further 
simplified to 

[3Eh3Ek/tE,[ cos ~ ( 3 E )  

~- [I Eh(T~) Ek( T~)E,( T,)I  

- Eh(T2) Ek(T2) E,( 7"2)1 

+ E.( T2)Ed T2)E,( T,)] 

- En(T , )Ed  T,)E,(T2)] 

+ En(T]) Ek( T2)E,( T2)] 

- E.( T2)Ek(T]) E,( T,)] 

+ E.( T2)Ek( TI)Et( T2)] 

--!Eh( T,) Ek( T2) E,( T,)]] cos ¢' 

~- AA cos q0, (9) 

where cos q0 represents the average weighted value 
of the various cos qO~jk and the sign of the quantity 
represented by AA can indicate whether cos qO(AE) 
and cos qb have similar or opposite signs. For non- 
centrosymmetric data it must be remembered that the 
observed differences in magnitudes between Eh(Tt) 
and E,(7"2) will always be an underestimate for [AEh} 
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in those cases that Ch(TI) and Ch(T2) are not precisely 
equal, such that the exact value of IAEhAEkAEd is 
not known. For centrosymmetric structures, however, 
these I,aEhl values can be reliably determined, either 
in the probabilistic sense according to (3)-(5) or by ]20 K 298 K 
experimental verification to determine whether the SMAX NUM (IEI 2) (IEI2) (I,aEI) 
intensity of a particular reflection extinguishes to zero 

0.303 271 0.871 0.871 0.042 
at some intermediate temperature to indicate a phase 0.381 264 0.762 0.724 0.058 
change of 180 ° (Boyes-Watson & Perutz, 1943). Given 0.436 244 1.160 1.092 0-080 

0-480 250 1'288 1-242 0' 100 
that these IAEhl may be determined for centro- 0.517 260 1.140 1.139 0.100 
symmetric structures, it may be shown that 0.549 244 0.895 0.853 0.112 

0"578 246 0"911 0"837 0"112 
[AEhAEkAEI] cos ~(AE) = AEhAEkAEi cos qb, (10) 0.605 245 0.953 0.889 0-129 

0"629 231 0"960 0"955 0"151 
0"647 185 1'016 1"014 0"168 where the sign of AEhAEkAE~ is a direct indication 

of whether the two cosine values are equal or opposite 
in sign, irrespective of the individual magnitudes of 
the various Eh~(Tj). If the magnitude of the structure 
product IAE, AEkAEd of the TDR substructure is 
large, the probability that cos ~ (AE)  is positive 
increases, such that the sign of AEhAEkAE~ tends to 
be equal to the sign of cos ~. 

These results are similar to those obtained by Karle 
(1983) from the observed magnitudes of an isomor- 
phous-replacement set of data. The interpretation of 
the sign of the product of the magnitude differences 
for TDR data, however, is less stringent than that 
associated with SIR data. In the SIR analysis it is 
assumed that the heavy-atom replacement structure 
is restricted to a very few sites in the cell and the 
structure invariants of the heavy-atom substructure 
tend very strongly toward a cos qb(AE) of +1 if 
IAEhAEkAEd is only moderately large, such that the 
sign of AEhAEkAE~ will with high probability be the 
sign of cos @. The TDR substructure, however, is not 
associated with a discrete number of specific atomic 
sites, but rather reflects a sampling over all atomic 
sites, with varying non-negative weights as indicated 
in (2b). The TDR substructure may often be only 
marginally less complex than the native structure 
itself, such that cos ~ ( A E )  will tend to +1 with a 
lower probability, except for those instances where 
IAEhAEkAEd is unusually large. The sign of 
AEhAEkAE~, nonetheless, does reveal the relative 
signs of cos @(AE) and cos q~, regardless of the mag- 
nitude of IAEhAEkAEd and the true sign of 
cos ~(AE). 

Computational analysis 

Data were obtained from two crystal structures that 
had been measured at two widely separated tem- 
peratures. The first structure was the tripeptide Pyr- 
Phe-Pro-t-CH3 (Smith, 1990): C2oH25N703, P21, a = 
13-397, b=6.171,  c = 1 3 . 3 3 1 ~ ,  /3=118-44 ° , Z = 2  
(120 K cell data). Data were recorded at 120 and 
298 K with Mo Ka radiation from the same crystal 
on the same instrument (Nicolet P3). The second 
structure that was examined was gramicidin A (Langs, 

Table 1. P21 tripeptide at 120 and 298 K 

Data are sorted into equi -propor t iona te  shells based on (sin O)/A, 
where there are N U M  reflections in each shell and S M A X  is the 
maximum (sin O)/X value (A - t )  for the shell. 

120 K/298 K 

(IEI)I(IEt) 
1.000 
1 '026 
1 "031 
1 "018 
1.000 
I "025 
1.043 
1 "035 
1 "003 
1 '001 

1988), a large polypeptide which crystallized from 
ethanol: C228H37oN4oO49, P2~2121, a=31.595,  b =  
32.369, c=24.219,~,  Z = 4  (120 K cell data). The 
gramicidin A data were recorded with Cu Ka radi- 
ation from two separate crystals on two separate 
instruments (Nicolet P3, 120K; Nonius CAD-4, 
277 K). The 277 K data were obtained from a crystal 
that was sealed in a capillary with a trace of mother 
liquor to prevent solvent loss and decomposition, the 
120 K crystal specimen was coated with a thin film 
of silicone grease and was flash frozen in the cold- 
temperature stream. 

The data sets were processed to determine the 
absolute scale and overall anisotropic temperature 
parameters (Levy, Thiessen & Brown, 1970; Sheriff 
& Hendrickson, 1987; Blessing & Langs, 1988) and 
these values were used to derive the normalized struc- 
ture amplitudes which were employed in this analysis. 
The average (IEI 2) statistic for the two data sets of 
each compound were compared as a function of 
increasing (sin 9)/A. A small corrective scale and 
isotropic thermal adjustment was applied to the room- 
temperature data sets to improve the fit with the 
low-temperature data. The average values of the 
differences in magnitude between the high- and low- 
temperature data sets were tabulated as a function of 
(sin O)/A. The overall average (IAEI) for the tripep- 
tide and gramicidin structures were 0-10 and 0.28 
respectively, and the local averages of (IAEI) were 
observed to increase as a function of increasing 
(sin O)/A, as expected. The (sin O)/A distributions 
of the adjusted structure amplitudes for the tripeptide 
and gramicidin structures are presented in Tables 1 
and 2, respectively. 

The 500 strongest ]E I values of the tripeptide and 
the 800 strongest ]E I values of the gramicidin data 
sets were employed to generate all triples which had 
A values greater than 1.0. The two lists included 142 
phase-restricted triples for the tripeptide and 131 
phase-restricted triples for the gramicidin structure, 
that is triples formed solely by zonal phase-restricted 
reflections. The values of AEhAEkAEI were computed 
for each of these lists of triples, the triples sorted on 
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Table 2. Gramicidin A data at 120 and 277 K 

The  da ta  are sor ted  as de sc r i bed  in T ab l e  1. 

120 K 277 K 
S M A X  N U M  (]EI 2) (IE] 2) ( l a E I )  

0.188 807 1.445 1.490 0.147 
0"236 765 0"959 0"956 0"141 
0.271 739 1.034 1'010 0-167 
0.298 707 0-705 0-674 0.169 
0"321 686 0"646 0-589 0'162 
0-341 648 0.714 0-661 0.184 
0"359 629 0'653 0"595 0-190 
0.375 586 0-662 0-636 0"203 
0'390 549 0"728 0'663 0-209 
0.404 554 0-704 0.605 0'238 
0.417 503 0-756 0'687 0.236 
0"430 472 1"029 0'951 0.274 
0.441 488 0.982 0"900 0"281 
0"452 433 0'964 0"955 0-294 
0.463 455 1.005 0-980 0"321 

120 K / 2 7 7  K 

<IEI)/(IEI) 
0-985 
1.001 

.012 
-023 
.048 
.040 
.048 
.021 
.047 
.079 
.049 
.040 

1.045 
1.005 
1.013 

the decreasing value of AEh/tEkAE, and the signs of 
AEhAEk/tEI and the values of cos q~ from the refined 
structures were compared. 

It was determined that the agreement between 
AEhAEk/tEI and cos q~ could be improved if all three 
IAEI values were required to be greater than some 
minimum value in an attempt to resolve these 
differences from the random and systematic errors in 
both sets of data. A minimum threshold value for 
IAEI that was one third of the overall average (I/tEl) 
was found to be quite effective, that is 0.03 for the 
tripeptide and 0.10 for the gramicidin data. In addi- 
tion, since the (IAEI) between the two temperature 
sets is expected to approach zero in the low (sin O)/h  
limit of the data, it is best to omit significantly large 
AE contributors from the analysis if they occur below 
some minimal (sin @)/h value. For the tripeptide it 
was determined that a (sin O)/h  cutoff of 0.35 ~-1 
appeared to be effective, at which point from Table 
1 it can be seen that the local (I/tEl) is only about 
0.05 and corresponds to a 2.5% measurable difference 
for an E value of 2.5. The average (l/tEl) distribution 
for the gramicidin structure is approximately three 
times larger than that noted for the tripeptide (Table 
2). This reflects both the ordering of the ethanol 
solvent structure as the crystal is cooled and the large 
systematic errors in scaling the two data sets together 
as a consequence of neglecting the differences in 
absorption due to the different crystal sizes and the 
added scattering of the capillary in the room- 
temperature experiment. It was noted that the 
(sin @)/A threshold for the gramicidin data could be 
lowered to 0.05/~-1, at which point this criterion 
appeared to have its greatest influence in discriminat- 
ing against a large group of triples, involving a small 
number of low-angle reflections, which were observed 
to have cos (9 in disagreement with AEhAEkAEI. 

The effect of applying the l/tEl threshold and 
minimum (sin O)/A cutoff in analyzing the two lists 
of triples dramatically reduces the number of 

invariants which are to be evaluated. The tripeptide 
analysis produced a final list of 17 triples and the 
gramicidin analysis provided 24 triples as is noted in 
Tables 3 and 4 respectively. The tripeptide produced 
nine positive AEhAEkAE, indications of which eight 
were correct and five of the six negative triples in the 
list were also identified by a negative /tEhAEkAEI 
value. The sign errors indicated by an * in Table 3 
are generally associated with the smaller I/tEn/tEkAE,] 
magnitudes, as is to be expected since cos q~(/tE) of 
the TDR substructure is required to be -1.0. Similar 
observations may be made with regard to the results 
from the gramicidin analysis in Table 4. It is possible 
that these latter results would be improved if the data 
were recorded from the same crystal on the same 
instrument. The method appeared to work well when 
the data sets were initially normalized using an 
anisotropic thermal model and subsequently 
readjusted to ensure that the (IEh] 2) averages in 
(sin O)/A shells were approximately equal as indi- 
cated in Tables 1 and 2. These tests indicate that the 
(Bj(T,)) obtained by this procedure can be used in 
place of (Bj(T~)min), probably for the reason that was 
provided earlier. 

Although the new method does not appear to be 
as powerful as SIR phasing, it does appear to be 
capable of reliably determining a limited number of 
negative as well as positive phase-restricted invariants 
for structures containing as many as 300 non-H atoms 
in the asymmetric unit. The fact that it can reliably 
identify negative triple invariants may offer a power- 
ful phasing strategy for identifying additional nega- 
tive triples through quadrupole constructions 
(Viterbo & Woolfson, 1973) and cosine-invariant 
evaluation procedures (Karle & Hauptman, 1958; 
Hauptman, Fisher, Hancock & Norton, 1969; 
Hauptman, 1970). 

Our calculations indicate that these algebraic for- 
mulae also tend to resolve the positive and negative 
cos q~ values for noncentrosymmetric three-phase 
invariants. An analysis of 6000 unrestricted triples of 
the tripeptide s t r u c t u r e  [ ] A E l m i n  = 0" 1, (sin ( ~ ) / A m i  n --- 

0"25 ~-1, ]AEhAEkAE, Imi, =0"02] produced a list of 
47 positive and 28 negative/tEhAEkAE, cosine indica- 
tions. It was noted that 46 of the 47 positive estimated 
triples had positive cos q~ values, but only 4 of the 
28 negative estimates actually had negative cos ¢b 
values in spite of the fact that one third of these values 
actually exceeded 60 ° . These results are quite similar 
to what is obtained by other cosine-invariant estima- 
tion procedures, in that (a) the positive estimates can 
identify a small group of exceedingly reliable 
invariants from which to initiate the phasing pro- 
cedure, but that (b) the list of negative estimated 
invariants is seldom reliable enough to employ 
actively as 180 ° phase-shifted values and the best 
strategy may be simply to delete them from the phas- 
ing process. 
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Table 3. Zonal restricted triples analysis of the tripeptide structure 

The triples are ranked on the descending value of AE.AEkAE,. NSER gives the position of the invariant in the original A-value-sorted 
list of  142 t r i p l e s .  T h e  M i l l e r  indices o f  the three E values in each triple and the value of  the cosine invariant computed  from the 
phases o f  the refined low-temperature structure are indicated. 

N S E R  A H K - H - K cos fib A E . A E k z a E  I 

14 2.45 16 0 - 5  - 3  0 - 1 0  - 1 3  0 15 I-0 2 0 - 6 x l 0  -3 
116 1.11 9 0 - 1 2  5 0 12 - 1 4  0 0 1.0 16.8 
94 1.26 9 0 - 1 2  2 0 10 - 1 1  0 2 1.0 12.0 
22 2.14 16 0 - 5  - 4  0 - 1 0  - 1 2  0 15 I-0 10-2 
95 1.24 I1 0 - 7  - 2  0 - 1 0  - 9  0 17 1.0 7.1 

133 !.03 6 0 - I 1  5 0 9 - 1 1  0 2 1.0 5.8 
41 1.71 8 0 5 4 0 - 1 4  - 1 2  0 9 1.0 5.7 
70 1.39 10 0 - 6  2 0 11 - 1 2  0 - 5  - I . 0  3.8* 
96 1.24 4 0 10 9 0 - 1 0  - 1 3  0 0 1-0 2-0 

134 1.03 3 0 10 7 0 - 9  - 1 0  0 - 1  1.0 - 2 . 1 "  
49 1.62 9 0 - 1 2  4 0 12 - 1 3  0 0 1.0 - 2 . 2 *  

132 1-03 1 0 - 1 3  12 0 2 - 1 3  0 11 - I . 0  - 2 - 5  
78 1.31 2 0 - 1 1  14 0 0 - 1 6  0 11 - I . 0  - 3 . 1  
99 1.23 5 0 I1 7 0 - 9  - 1 2  0 - 2  - 1 . 0  - 5 . 2  

128 1-04 i 0 - 1 3  II  0 - 2  - 1 2  0 15 - I - 0  - 5 - 9  
17 2.28 9 0 - 1 2  8 0 5 - 1 7  0 7 i . 0  - 6 . 4 *  
90 !-27 3 0 13 9 0 - 1 1  - 1 2  0 - 2  - 1 . 0  - 7 . 2  

Table 4. Zonal restricted triples analysis for gramicidin A 

Columns  are labeled as indicated in Table 
these methods.  

3. The tenth triple in the list is phase restricted to +90  ° and thus cannot  be determined by 

N S E R  A H K - H -  K cos fib A E . z a E k A E  I 

14 2.08 16 0 1 0 - 2 5  - I  - 1 6  25 0 I-0 185 .0x10  -3 
65 1.41 2 0 5 15 0 - 2  - 1 7  0 - 3  1.0 169.4 
59 1.44 16 0 I 2 0 - 9  - 1 8  0 8 I-0 86.4 
64 1.41 2 0 5 2 0 - 2  - 4  0 - 3  1.0 67.1 

124 1-06 15 0 2 - 6  0 - 8  - 9  0 6 1.0 61-6 
87 1.22 16 0 l 2 0 7 - 1 8  0 - 8  - 1 . 0  60.5* 
73 1.30 16 0 l - 2  0 9 - 1 4  0 - 1 0  1.0 59.4 

I l l  1.10 8 0 l 0 0 l0  - 8  0 - i l  1-0 57-9 
60 1.44 2 0 5 4 0 3 - 6  0 - 8  1.0 51.0 
47 1-56 4 0 6 0 - 2 7  - 6  - 4  27 0 0.0 36.7 

l l 6  1.09 8 0 I - 2  0 - 9  - 6  0 8 - 1 . 0  29.0* 
70 1.33 2 0 5 3 0 - 1 0  - 5  0 5 1.0 26-4 

4 2.79 4 0 6 16 0 - l  - 2 0  0 - 5  I-0 13.2 
52 1-50 4 0 6 2 0 2 - 6  0 - 8  - 1 . 0  13-1* 
50 1.54 0 27 2 0 0 4 0 - 2 7  - 6  1.0 6.9 

127 1.05 2 0 5 1 0 - 1 5  - 3  0 10 1.0 6.6 
26 1.83 0 27 2 0 0 - 6  0 - 2 7  4 1.0 6-2 

12 2.18 0 27 2 0 - 1 3  - 6  0 - 1 4  4 1.0 - 9 . 3 *  
40 1.63 0 27 2 0 0 - 1 0  0 - 2 7  8 1.0 - 1 1 . 8 "  

105 1-13 0 27 2 0 - 1 3  - 1 4  0 - 1 4  12 - 1 . 0  - 1 1 . 8  
117 1.08 2 0 5 0 0 4 - 2  0 - 9  1.0 - 3 4 . 3 *  

35 1-73 0 5 4 0 8 2 0 - 1 3  - 6  - 1 . 0  - 3 9 . 6  
114 1.09 5 0 5 2 0 - 7  - 7  0 2 - 1 . 0  - 4 6 . 5  
122 1.07 4 0 3 3 0 - 5  - 7  0 2 - 1 . 0  - 5 3 . 3  

Probabilistic methods for estimating the general 
unrestricted three-phase invariant cosines for SIR 
data have been derived by Hauptman (1982). In this 
work the mixed moments of the SIR phase-invariant 
distributions have been defined as 

a.,,, = E J'~ g']' (11) 
J 

where fj and gi are isomorphously related atoms of 
the native and derivative structures. The TDR sub- 
structure is not stoichiometrically discrete, however, 
and the relative scattering powers of the various fj 
and gj will exhibit strong non-uniform, sin O depen- 
dencies. It will thus be necessary to evaluate a,,,, as 

a function of sin ~9 and interpolate these moments as 
they apply to specific structure-factor amplitudes in 
the Hauptman formula. It remains to be demonstrated 
whether reliable ~9-dependent moment values may 
be obtained empirically from an expression such as 

~,m(s) -~ (IF~, G~'I),. (12) 

The four sets of diffraction data were recorded by 
Drs W. A. Pangborn and D. C. Swensen and processed 
utilizing computer software developed by R. H. 
Blessing. I thank Dr G. D. Smith for calling my 
attention to the tripeptide data and allowing their use 
in the initial phases of  this study. The research 
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HL32303 and GM32812. 
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Abstract 

An analytical expression for molecular overlap as a 
function of position is presented; it can be calculated 
by means of Fourier transforms. Overlap functions 
between pairs of symmetry elements can be combined 
to give a crystallographic packing function. Multipli- 
cation of this packing function with the translation 
function increases the significance of the latter, as 
shown for a trigonal test example. 

Introduction 

Patterson-search (Hoppe, 1957a, b; Nordman & 
Nakatsu, 1963; Huber, 1965) or reciprocal-space 
(Rossmann & Blow, 1962; Crowther & Blow, 1967; 
Lattman & Love, 1970; see Rossmann, 1972) 
molecular-replacement techniques are used increas- 
ingly for macromolecular structure solution when a 
partial or similar structure is known. The method is 
carried out in two stages: determination of the model 
orientation in the new crystal (rotation function), 
followed by translation of the rotated model with 
respect to the new cell axes (translation function). It 
is not infrequent that a reasonable solution to the 
rotation function can be obtained with no corre- 
sponding translation vector. Use has been made of 
packing functions in order to discriminate peaks in 
the translation function on the grounds of reasonable 
crystallographic packing. A short summary of avail- 
able packing algorithms has been given by Fitzgerald 
(1990); they operate as follows. 

0108-7673/91/050521-06503.00 

(i) Cohen & Suh (unpublished). The shape of the 
protein is approximated by a number of spheres, from 
which intersphere distances are calculated. 

(ii) Bott & Sarma (1976). A criterion is defined for 
bad contacts; when the number of bad contacts 
exceeds a user-defined number, the translation vector 
t is abandoned. 

(iii) Hendrickson & Ward (1976). The molecular 
shape is defined by a shape function M(r) ,  where 

1 i f r  is intramolecular 
M ( r ) =  0 otherwise. 

The packing function is then calculated using the 
relation 

M ( r ) w  M ( [ R ] r + t )  d3r 
P(t) = j" M(r)  d3r 

where [ R ] denotes a crystallographic rotation matrix 
and t the translation vector. 

(iv) Harada, Lifchitz, Berthou & Jolles (1981). In 
investigating the use of a correlation coefficient to 
determine the translation function, 

s 
F,2,(h) ][ F,.(h, t)]l 2 

h 
~ ( t )  = i /2,  

approximations were made to allow utilization of 
FFT methods, resulting in a function 

~(t) = to(t) /o(t)  
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